Originally Posted by Disgod
I think the proper question that needs to be asked is: What is the theoretical minimum size that a black hole can be that can sustain itself?
The problem is Hawking Radiation, the smaller the black hole the more Hawking Radiation it releases, and the quicker the black hole dissipates. So, at some point the black hole is going to be releasing so much energy out that it will collapse, explode, dance a merry jig (I'm not entirely sure about what will happen). I heard once that the theoretical minimum is somewhere around the mass of Mount Everest, but I could be wrong.

I would think the minimum mass for which a black hole can sustain itself would depend on its environment.
if you consider a black hole in a theoretical universe that is really completely "empty" (no radiation, no matter), then it would continously loose energy (and therefore mass) by the Hawking Radiation you described. for a big black hole this might take a very long time, but in the end it would vanish.
on the other hand, in our "real" universe, we always have the cosmic background radiation (2.7K I think). so if the black hole is so big that the temperature of its Hawking Radiation is colder than 2.7K, the black hole would absorb more radiation than it emits, gaining energy/mass and growing bigger.
furthermore, our "real" universe is not completely empty of matter but contains some "dust". so the black hole might also survive if it could suck in this cosmic dust faster than it looses energy/mass due to Hawking Radiation, even if its so small that Hawking Radiation is hotter than 2.7 K